Abstract

The subspace state-space system identification method has drawn extensive attention in structural modal identification, which is generally involved with the stabilization diagram for estimating structural modal parameters. However, the conventional stabilization diagram has an inherent problem, i.e., some spurious modes may be identified as stable results, leading to the adverse effect on structural modal identification. To address this issue, this paper proposes an improved subspace algorithm, in which a Monte Carlo-based stabilization diagram is involved. The performance of the Monte Carlo-based stabilization diagram for discriminating the poles denoting the physical modes from those representing spurious modes is demonstrated through a numerical study. The simulation results further prove that the proposed method can accurately estimate the time-varying structural modal parameters. Moreover, the proposed method is applied to field measurements on a 218-m-tall building during the 1994 Northridge earthquake event, and the identified results verify the applicability and effectiveness of the proposed method in field measurements. This paper aims to provide an effective tool for modal identification of high-rise buildings under earthquake excitations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call