Abstract

Modal identification involves primarily the determination of natural frequencies, damping ratios, mode shapes of a dynamic system, etc. It is usually regarded as an essential task in a wide branch of structural dynamics and civil engineering, such as structural vibration control and damage identification of buildings or bridges. There are many modal identification techniques. Basically, these techniques can be categorized into two groups: deterministic methods and Bayesian approaches. The first group can be used to provide deterministic (or optimal) estimations of modal parameters, but they are unable to quantify the estimation uncertainties. The second group is based on a usage of the Bayesian framework. Compared to the first group, the second group of methods has a typical merit of being able to offer uncertainty information of identified parameters, which is of great interests, or even necessary, for some follow-up studies. In this paper, both a deterministic method, i.e., a combination of spectral analysis, filtering and Random Decrement Technique (RDT), and a Bayesian method, i.e., Bayesian Spectral Density Approach (BSDA), are exploited to experimentally identify the modal parameters of a 303 m high-rise building that was subjected to a landfall typhoon. The validity and efficiency of each method is verified by comparing the two kinds of results. Meanwhile, the identified modal parameters are used for the serviceability assessment of this high-rise building against some frequency-specific criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.