Abstract

During the 2010 Mw7.1 Darfield earthquake, the single span Davis Road Bridge located 5 km southeast of Lincoln, New Zealand, sustained significant lateral spreading damage to the western approach. While lateral spreading resulted in up to 450 mm of approach settlement and evidence of damage to the pile foundations, the bridge superstructure sustained no significant damage. Prior to reinstating traffic, the bridge was used for full scale dynamic testing to characterise the influence of different substructure components on the lateral dynamic behaviour of the bridge superstructure.
 The bridge was characterised using an eccentric mass shaker and an array of accelerometers to perform lateral forced vibration testing in both the transverse and longitudinal directions. Modal properties were extracted from these tests using multiple system identification algorithms. The experimental testing and system identification methodology are described here. Forced vibration testing was able to detect one mode in each principal direction of the bridge, with the fundamental modes for the transverse and longitudinal direction occurring at a period of 0.118 s and 0.092 s respectively. The torsional response found during the transverse direction shaking was most likely due to the effect of gap opening around the piles on the western abutment, while the longitudinal response was dominated by the approach soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.