Abstract

The modal decomposition study of the non-reactive flow field in a dual-swirl combustor is investigated through the large eddy simulation. The formation mechanism and function of various recirculation zones are elaborated by analyzing the time-averaged and instantaneous velocity contours of the center section. The precessing vortex core (PVC) is first visualized by the pressure iso-surface, and the evolution process is presented. Different dimensionality reduction methods are adopted to identify the coherent structures from the flow field. The most energetic spatial structure corresponding to the PVC and its second-order harmonic structure is extracted by the classical proper orthogonal decomposition (POD). The coherent structures with high frequency have relatively low energy content. In addition, a spectral proper orthogonal decomposition (SPOD) method, which can implement spatial-temporal decomposition simultaneously, is introduced to obtain the energy-based spatial structures at all characteristic frequencies. A triple-helix with azimuth wave number m = 3 and a quadruple-helix with azimuth wave number m = 4 are discovered as the third-order and the fourth-order harmonics of single-helix, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.