Abstract

Abstract In order to determine the flame transfer function of a combustion system, different mechanisms have been identified that need to be modeled. This study focuses on the generation and propagation of one of these mechanisms, namely, the swirl fluctuations downstream of a radial swirl combustor under isothermal conditions. Swirl fluctuations are generated experimentally by imposing acoustic perturbations. Time-resolved longitudinal and crosswise particle image velocimetry (PIV) measurements are conducted inside the mixing tube and combustion chamber to quantify the evolution of the swirl fluctuations. The measured flow response is decomposed using spectral proper orthogonal decomposition to unravel the contributions of different dynamical modes. In addition a resolvent analysis is conducted based on the linearized Navier–Stokes equations to reveal the intrinsically most amplified flow structures. Both, the data-driven and analytic approach, show that inertial waves are indeed present in the flow response and an inherent flow instability downstream of the swirler, which confirms recent theoretical works on inertial waves. However, the contribution of the identified inertial waves to the total swirl fluctuations turns out to be very small. This is suggested to be due to the very structured forcing at the swirler and the additional amplification of shear-driven modes. Overall, this work confirms the presence of inertial waves in highly turbulent swirl combustors and evaluates its relevance for industry-related configurations. It further outlines a methodology to analyze and predict their characteristics based on mean fields only, which is applicable for complex geometries of industrial relevance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call