Abstract

The actor model is a well-established way to approach to modularly designing and implementing concurrent and/or distributed systems, seeing increasing adoption in industry. But deductive verification tailored to actor programs remains underexplored; general concurrent logics could be used, but the logics are complex and full of features to reason about behaviors the actor model strives to avoid. We explore a relatively lightweight approach of extending a system for proving sequential program correctness with means to prove safety properties of actor programs (currently, assuming no faults). We borrow ideas from hybrid logic, a modal logic for stating assertions are true at a particular point in a model (in this case, a particular actor’s local state). To make such assertions useful, we stabilize them using rely-guarantee-style reasoning over local actor states, and only permit sending stable versions of these assertions to other actors. By carefully restricting the formation of assertions that a proposition is true at a certain actor, we avoid the need for actors to handle each others’ rely-guarantee relations explicitly. Finally, we argue that the approach requires only modest adjustments beyond applying traditional sequential techniques to actors with immutable messages, by implementing most of the logic as a Dafny library.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call