Abstract

We study the possible expansion of the electromagnetic field scattered by a strictly convex metallic nanoparticle with dispersive material parameters placed in a homogeneous medium in a low-frequency regime as a sum of modes oscillating at complex frequencies (diverging at infinity), known in the physics literature as the quasi-normal modes expansion. We show that such an expansion is valid in the static regime and that we can approximate the electric field with a finite number of modes. We then use perturbative spectral theory to show the existence, in a certain regime, of plasmonic resonances as poles of the resolvent for Maxwell’s equations with non-zero frequency. We show that, in the time domain, the electric field can be written as a sum of modes oscillating at complex frequencies. We introduce renormalised quantities that do not diverge exponentially at infinity. We present numerical simulations in two dimensions to corroborate our results. We illustrate the usefulness of our method on the super-localisation of a point-like emitter in a resonant environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.