Abstract

The goal of this study was to investigate the performance of different feature types for voice quality classification using multiple classifiers. The study compared the COVAREP feature set; which included glottal source features, frequency warped cepstrum and harmonic model features; against the mel-frequency cepstral coefficients (MFCCs) computed from the acoustic voice signal, acoustic-based glottal inverse filtered (GIF) waveform, and electroglottographic (EGG) waveform. Our hypothesis was that MFCCs can capture the perceived voice quality from either of these three voice signals. Experiments were carried out on recordings from 28 participants with normal vocal status who were prompted to sustain vowels with modal and non-modal voice qualities. Recordings were rated by an expert listener using the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V), and the ratings were transformed into a dichotomous label (presence or absence) for the prompted voice qualities of modal voice, breathiness, strain, and roughness. The classification was done using support vector machines, random forests, deep neural networks and Gaussian mixture model classifiers, which were built as speaker independent using a leave-one-speaker-out strategy. The best classification accuracy of 79.97% was achieved for the full COVAREP set. The harmonic model features were the best performing subset, with 78.47% accuracy, and the static+dynamic MFCCs scored at 74.52%. A closer analysis showed that MFCC and dynamic MFCC features were able to classify modal, breathy, and strained voice quality dimensions from the acoustic and GIF waveforms. Reduced classification performance was exhibited by the EGG waveform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.