Abstract

We propose a semianalytical formalism based on a time-domain resonant-mode-expansion theory to analyze the ultrafast temporal dynamics of optical nanoresonators. We compare the theoretical predictions with numerical data obtained with the FDTD method, which is commonly used to analyze experiments in the field. The comparison reveals that the present formalism (i) provides deeper physical insight onto the temporal response and (ii) is much more computationally efficient. Since its numerical implementation is easy, the formalism, albeit approximate, can be advantageously used to both analyze and design ultrafast nano-optics experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.