Abstract
An array of flared rectangular holes pierced through a conducting screen is treated herein by a rigorous full-wave modal analysis using the moment method entailing Green's functions for rectangular cavities and planar multilayer structures in the spectral domain as well as classical Floquet theorem and the mode-matching technique. In this way, flared holes with arbitrary taper profile that may each even be composed of different dielectric sections and which perforated metal films that may be sandwiched between multiple layers of dielectric slabs on both sides is herein treated. The eclectic permutations of geometrical, structural, and material attributes thus afforded by this generic topology facilitate correspondingly diverse investigations that may prove pivotal to the success of future explorations in search for new breakthrough discoveries and innovations in the subject of extraordinary transmission through subwavelength hole arrays, to which the herein-analyzed configuration is central. Oblique angles of incidence for both principal polarizations and metal losses incurred by imperfect conducting screens are also investigated in this work, all constituting crucial aspects that may often be neglected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.