Abstract

The present study deals with an investigation of free vibration analysis of laminated composite and sandwich plates. The finite element model is developed in ANSYS Parametric Design Language (APDL) tool using shell elements for composite plates and solid shell elements for sandwich plates. The influence of material, fiber orientation, aspect ratio and boundary conditions on modal behavior of isotropic, laminated composite and sandwich plates are explored. Graphite- Epoxy was considered for the analysis of composite plates and aluminum 2024-T3 was considered for isotropic plate simulations. Sandwich structure was modeled by considering aluminum core and Graphite-Epoxy as face sheets. Quasi- isotropic [0°/45°/-45°/90°]s, bending stiff [0°/0°/30°/-30°]s, and torsion stiff [45°/-45°/-45°/45°]s fiber orientations are considered for the analysis. Block Lanczos mode extraction method was adopted to obtain natural frequency values. The simulation results indicated that the cantilever boundary condition is most suited for the applications where the operating frequency range is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.