Abstract

Bio-mechanics is most difficult to carry out on the bone due to the modeling difficulty and complex forces acting on the bones. In this study, we consider human femur bone for modeling analysis. The modal analysis is also important as that of static analysis. We can predict the place at which the fracture occurs. The modal analysis for three different materials is carried out to find the feasible material for bone implants. These materials are Natural bone, AZ31, and Stainless steel 316L. The daily activity such as walking is used as a boundary condition in our study. The femur head is fixed and 750N load is applied at the Knee joint. The results are obtained for these materials. The modal frequencies for Natural Femur bone vary from 0.328Hz to 2.258Hz for Mode1 to Mode 10. The modal frequencies for AZ31 vary from 1.502Hz to 10.292 Hz for Mode1 to Mode 10. The modal frequencies for 316L vary from 3.120Hz to 21.150 Hz for Mode1 to Mode 10. These frequencies are minimal as compared to the natural frequency of the Femur bone. AZ31 is best suited for the fabrication of bone implants because of its lightweight in comparison with 316L material. Also, this is biodegradable in the human body over the period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call