Abstract

A new mesoscale thermosensitive actuator design for circuit breakers based on a U-shaped compliant mechanism was introduced as a potential replacement for bimetal strips in miniature circuit breakers. In a previous study, the response of this design to the thermal fields produced by a steady current flow was analyzed. This article presents a modal analysis of the compliant mechanism. The goal of the analysis is to compare the natural frequencies of the mechanism with the frequency of the magnetic loads caused by the flow of the alternating currents. Simulations with simple beam elements and 3D elements are presented and results are compared with experimental measurements. The study finds that the natural frequency of the mechanism differs by a factor of about 8 with the AC frequency. The conclusion is that the proposed compliant mechanism design’s performance as a thermal actuator will not be affected by the cyclic loads generated by the forces induced by the AC magnetic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.