Abstract

It has become increasingly clear that large RNA molecules, especially long noncoding RNAs, function in almost all gene regulatory processes (Cech & Steitz, 2014). Many large RNAs appear to be structural scaffolds for assembly of important RNA/protein complexes. However, the structures of most large cellular RNA molecules are currently unknown (Hennelly & Sanbonmatsu, 2012). While chemical probing can reveal single-stranded regions of RNA, traditional approaches to identify sites of chemical modification are time consuming. Mod-seq is a high-throughput method used to map chemical modification sites on RNAs of any size, including complex mixtures of RNA. In this protocol, we describe preparation of Mod-seq high-throughput sequencing libraries from chemically modified RNA. We also describe a software package "Mod-seeker," which is a compilation of scripts written in Python, for the analysis of Mod-seq data. Mod-seeker returns statistically significant modification sites, which can then be used to aid in secondary structure prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call