Abstract

ABSTRACTThin film phosphors for field emission displays show the potential to overcome the life-limiting problems that traditional powders face because of their high surface areas. By depositing a fully dense thin film, the surface area can be dramatically reduced, while the electrical and thermal conductivity is increased. Metal organic chemical vapor deposition offers the ability to deposit high quality, dense films that are crystalline-as-deposited and at temperatures low enough to allow for inexpensive glass. Deposition has been produced from mixtures of Y(tmhd)3, TEOS, Tb(tmhd)3, and O2 using a liquid delivery system. Coatings were shown to be composed of Y, Si, and Tb by x-ray fluorescence, but x-ray diffraction did not show any crystallinity. Excitation using radioluminescence produced a peak in the visible green at approximately 540 nm, indicative of the excitation of Tb3+. The morphology of the deposition was smooth, with surface features on the order of one micron and below. Some limited microcracking was also observed in the morphology because of the thermal expansion mismatch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call