Abstract

MoC quantum dots are dispersed in a carbon film by the temperature-programmed method. The hybrid catalyst is obtained by the mixed solution method, and the hybrid catalyst is optimized by adjusting the content of CeO2 to obtain the composite catalyst 15%-COMCC with the best photocatalytic hydrogen evolution activity. SEM and TEM show that there is an intimate interface contact between CeO2 and MoC-QDs/C, which provides the basis for smooth electron transfer. It is proved by XPS that there is a strong interaction force between the catalysts, which provides a evidence for electron transfer between semiconductors. It is proved by electrochemistry that the introduction of CeO2 can effectively reduce the hydrogen evolution potential and provide powerful conditions for the hydrogen production of the hybrid catalyst. The carbon film has excellent conductivity, can effectively suppresses the recombination of photo-generated carriers, and accelerate the separation of carriers between the interfaces. MoC quantum dots with high dispersibility embedded in the carbon film provide a lot of active sites for photocatalytic hydrogen production. This research provides an effective strategy for the application of ultra-thin carbon film in photocatalytic hydrogen evolution, the loading of quantum dots, and the design and synthesis of non-noble metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.