Abstract
In germinating grains of barley, Hordeum vulgare L. cv. Himalaya, free proline accumulated in the starchy endosperm during the period of rapid mobilization of reserve proteins. When starchy endosperms were separated from germinating grains and homogenized in a dilute buffer of pH 5 (the pH of the starchy endosperm), the liberation of proline continued in these suspensions. The process was completely inhibited by diisopropylfluorophosphate, indicating that it was totally dependent on serine carboxy-peptidases. The carboxypeptidases present in the starchy endosperms of germinating grains were fractionated by chromatography on DEAE-cellulose. Four peaks were obtained, all with different activity spectra on the seven carbobenzoxydipeptides (Z-dipeptides) tested. Two of the peaks corresponded to previously known barley carboxypeptidases; these as well as a third peak hydrolyzed substrates of the types Z-X-Y and Z-X-Pro (X and Y denote any amino acid residue except proline). The fourth peak corresponded to a proline carboxypeptidase specific for substrates of the Z-Pro-X type. Apparently, in the hydrolysis of longer proline-containing peptides there must be sequential cooperation between the two carboxypeptidase types. The carboxypeptidases in extracts of starchy endosperms also liberated proline from the peptides Ala-Ala-Ala-Pro and Ala-Ala-Pro while Ala-Pro and Pro-Ala were not attacked. The dipeptides, however, were rapidly hydrolyzed around pH 7 by extracts prepared from the scutella of germinating grains. It is concluded that one part of the proline residues of the reserve proteins is liberated in situ in the starchy endosperm through the combined action of acid proteinases and carboxypeptidases, while another part is taken up in the form of small peptides by the scutellum, where proline is liberated by amino- and/or dipeptidases in some "neutral compartment".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.