Abstract
Particulate air pollution, including coal fly ash, contains iron, and some of the pathological effects after inhalation may be due to reactive oxygen species produced by iron-catalyzed reactions. The objective of this study was to determine whether iron, present in coal fly ash, was mobilized, leading to ferritin induction in human airway epithelial cells, and whether the size of the particles affected the amount of iron mobilized. Three types of coal were used to generate the three size fractions of fly ash collected. The Utah coal fly ash was generated from a bituminous b coal, the Illinois coal fly ash from a bituminous c coal, and the North Dakota coal fly ash from a lignite a coal. Three size fractions were studied to compare the amount of iron mobilized in human airway epithelial (A549) cells and by citrate in cell-free suspensions. The size fractions selected were fine (<2.5 microm) and coarse (2.5-10 microm) components of PM10, airborne particulate matter <10 microm in diameter, and the fraction greater than 10 microm. Coal fly ash samples were incubated with 1 mM citrate to determine if iron associated with coal fly ash could be mobilized. Iron was mobilized by citrate from all three size fractions of all three coal types to levels as high as 56.7 nmol of Fe/mg of coal fly ash after 24 h. With all three coal types, more iron was mobilized by citrate from the <2.5 microm fraction than from the >2.5 microm fractions. Further, the mobilized iron was in the Fe(III) form. To determine if iron associated with the coal fly ash could be mobilized by A549 cells, cells were treated with coal fly ash, and the amount of the iron storage protein ferritin was determined after 24 h. Ferritin levels were increased by as much as 11.9-fold in cells treated with coal fly ash. With two of the three types of coal studied, more ferritin was induced in cells treated with the <2.5 microm fraction than with the >2.5 microm fractions. Further, inhibition of the endocytosis of the coal fly ash by the cells resulted in ferritin levels that were near that of the untreated cells, suggesting that iron was mobilized intracellularly, not in the culture medium. The results of this study suggest that differences in particle size and speciation of iron may affect the release of iron in human airway epithelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.