Abstract

The microalga Parietochloris incisa (Trebouxiophyceae, Chlorophyta) was isolated from an alpine environment. It was found to accumulate unusually high amounts of arachidonic acid (AA)-rich TAG. We have hypothesized that microalgal PUFA-rich TAG might have a role as a depot of PUFA, which could be mobilized for the construction of chloroplastic membranes under sudden changes in environmental conditions. We have thus studied the changes in lipid and fatty acid composition during recovery from nitrogen starvation at 24 and 12 °C. At both temperatures, TAG was mainly consumed to support growth, however, there was a significant increase in the content of AA in the chloroplastic lipids, predominantly, monogalactosyldiacylglycerol (MGDG) at 24 °C, but much less so at 12 °C. Similar results were obtained using radiolabeled precursors. These and other findings point to the existence of three modes of operation for the construction of chloroplastic lipids that the alga can utilize to support growth under changing environmental conditions. When environmental conditions do not support growth, the prokaryotic pathway predominates. When sudden changes occur, the eukaryotic pathway is enhanced and can be even further augmented by influx of acyl moieties from TAG to maximize the exploitation of growth conditions that may possibly be transitory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.