Abstract

Antipredator behavior is present in many biological systems where individuals collectively react to an imminent attack. The antipredator response may influence spatial pattern formation and ecosystem stability but requires an organism's cost to contribute to the collective effort. We investigate a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. In our spatial stochastic simulations, the radius of antipredator response defines the maximum prey group size that disturbs the predator's action, determining the individual cost to participate in antipredator strategies. We consider that each organism contributes equally to the collective effort, having its mobility limited by the proportion of energy devoted to the antipredator reaction. Our outcomes show that the antipredator response leads to spiral patterns, with the segregation of organisms of the same species occupying departed spatial domains. We found that a less localized antipredator response increases the average size of the single-species patches, improving the protection of individuals against predation. Finally, our findings show that although the increase of the predation risk for a more localized antipredator response, the high mobility constraining benefits species coexistence. Our results may help ecologists understand the mechanisms leading to the stability of biological systems where locality is crucial to behavioral interactions among species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call