Abstract
Mobility restrictions-trade and travel bans, border closures and, in extreme cases, area quarantines or cordons sanitaires-are among the most widely used measures to control infectious diseases. Restrictions of this kind were important in the response to epidemics of SARS (2003), H1N1 influenza (2009), Ebola (2014) and, currently in the containment of the ongoing COVID-19 pandemic. However, they do not always work as expected. To determine when mobility restrictions reduce the size of an epidemic, we use a model of disease transmission within and between economically heterogeneous locally connected communities. One community comprises a low-risk, low-density population with access to effective medical resources. The other comprises a high-risk, high-density population without access to effective medical resources. Unrestricted mobility between the two risk communities increases the number of secondary cases in the low-risk community but reduces the overall epidemic size. By contrast, the imposition of a cordon sanitaire around the high-risk community reduces the number of secondary infections in the low-risk community but increases the overall epidemic size. Mobility restrictions may not be an effective policy for controlling the spread of an infectious disease if it is assessed by the overall final epidemic size. Patterns of mobility established through the independent mobility and trade decisions of people in both communities may be sufficient to contain epidemics.
Highlights
The 2003 Severe Acute Respiratory Syndrome (SARS) epidemic, the 2009 influenza A (H1N1) pandemic, the 2014 West African Ebola Virus Disease (EVD) epidemic and the ongoing COVID-19 pandemic, provide constant reminders that the rapidity and extent of the spread of infectious disease depends on patterns of human mobility
In order to understand the conditions under which mobility restrictions may be effective, we explore the impact of mobility between the two communities, high-risk community (HRC) and low-risk community (LRC), on the final epidemic size
If the infected individuals move to a region having better sanitary conditions, an increase in the number of secondary infections in the LRC may be offset by a reduction in the number of secondary infections in the HRC
Summary
Mobility restrictions—trade and travel bans, border closures and, in extreme cases, area quarantines or cordons sanitaires—are among the most widely used measures to control infectious diseases. Restrictions of this kind were important in the response to epidemics of SARS (2003), H1N1 influenza (2009), Ebola (2014) and, currently in the containment of the ongoing COVID-19 pandemic. They do not always work as expected
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.