Abstract

Ultra-reliable and low-latency communications (URLLC) is considered as one of three new application scenarios in the fifth generation cellular networks. In this work, we aim to reduce the user experienced delay through prediction and communication co-design, where each mobile device predicts its future states and sends them to a data center in advance 1 . Since predictions are not error-free, we consider prediction errors and packet losses in communications when evaluating the reliability of the system. Then, we formulate an optimization problem that maximizes the number of URLLC services supported by the system by optimizing time and frequency resources and the prediction horizon. Simulation results verify the effectiveness of the proposed method, and show that the tradeoff between user experienced delay and reliability can be improved significantly via prediction and communication co-design. Furthermore, we carried out an experiment on the remote control in a virtual factory, and validated our concept on prediction and communication co-design with the practical mobility data generated by a real tactile device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.