Abstract

We propose a new mechanism to design risk-pooling contracts between operators to improve service resilience during disruptions. We formulate a novel two-stage stochastic multicommodity flow model to determine the cost savings of a coalition under different disruption scenarios and solve it using L-shaped method along with sample average approximation. Computational tests are conducted for network instances with up to 1024 scenarios. The proposed model is applied to a regional multi-operator network in the Randstad area of the Netherlands, for four operators, 40 origin-destination pairs, and over 1400 links where disruption data is available. Using the proposed method, we identify stable cost allocations that could yield a 66% improvement in overall network performance over not having any risk-pooling contract in place. We illustrate the sensitivity of the HTM operator's bargaining power to different network structures and disruption scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.