Abstract
A common problem which we encounter on a daily basis is dispensing of yield stress fluids such as condiments, lotions, toothpaste, etc. from containers. Beyond consumer products, assuring the flow of yield stress fluids such as crude oil, mud, blood, paint, pharmaceutical products, and others, is essential for the respective industries. Elimination of wall-induced friction can lead to significant savings in the energy required for flow of yield stress fluids, as well as associated product loss and cleaning costs. Lubricant-impregnated surfaces (LIS) have been shown to change the dynamic behavior of yield stress fluids and enable them to flow without shearing. Despite the wide applicability of this technology and its general appeal, the fundamental physics governing the flow of yield stress fluids on LIS have not yet been fully explained. In this work, we study the mobility of yield stress fluids on LIS, and explain the relationship between their macroscale flow behavior and the microscale properties of LIS. We show that for yield stress fluids the thermodynamic state of an LIS can be the difference between mobility and immobility. We demonstrate that LIS can induce mobility in yield stress fluids even below their yield stress allowing them to move as a plug without shearing with an infinite slip length. We identify different mobility mechanisms and establish a regime map for drag reduction in terms of the shear stress to yield stress ratio and the microscopic properties of the LIS. We demonstrate these regimes in a practical application of pipe flow thereby providing key insights for the design of LIS to induce mobility of yield stress fluids in a broad range of practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.