Abstract

The two‐dimensional hole gas (2DHG) induced at H‐terminated diamond surface provides the most widely used room‐temperature surface electrical conductance of diamond semiconductors. Temperature and hole sheet density dependences of the mobility of 2DHG in H‐terminated diamond are investigated for the first time considering four scattering mechanisms: surface impurity (SI) scattering, acoustic deformation potential (AC) scattering, nonpolar optical phonon (NOP) scattering, and surface/interface roughness (SFR/IFR) scattering. The calculation results are then compared with the experimental data, where the best agreement is obtained with the effective coupling constant of the non‐polar optical phonon Dnop and the correlation length L with values of of 1.2 × 1010 eV cm−1 and 2 nm, respectively. The theoretical data show that the SI scattering dominates the 2DHG mobility at a relatively large range of the temperature and the hole density due to the proximity of the surface impurities to the 2DHG, while the NOP scattering becomes important as the temperature increases further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.