Abstract

The degree of mixing of organic matter with minerals in organic and hemi-organic horizons of forest soils largely differs between humus types. As clay minerals might control the mobility of radiocesium in these forest floor horizons, plant contamination could greatly vary with the kind of humus. We measured the mobility of radiocesium in the upper O, OAh and Ah horizons of three acid forest soils with three distinct humus types: eumoder, dysmoder and fibrimor. We used two different approaches: a physico-chemical test quantifying the radiocesium interception potential (RIP) and a biological assay simulating an experimental rhizosphere. The results show that the 137Cs horizon-to-plant transfer is directly governed by RIP, and thus by frayed edge sites born by weathered micaceous minerals. The inverse relationship between RIP and organic matter content indicates that in the three sites investigated the mixing of organic residues with Cs-fixing minerals is a key process in 137Cs mobility. These Cs-fixing clay minerals indeed decrease in the sequence eumoder>dysmoder>fibrimor because they are more diluted in forest floor with less bioturbation. Our results suggest that humus type might be an important parameter in classifying forest soils with respect to their ability to transfer radiocesium to the above standing vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.