Abstract

We study the mobility of solitons in lattices with quadratic (chi(2), alias second-harmonic-generating) nonlinearity. Using the notion of the Peierls-Nabarro potential and systematic numerical simulations, we demonstrate that, in contrast with their cubic (chi(3)) counterparts, the discrete quadratic solitons are mobile not only in the one-dimensional (1D) setting, but also in two dimensions (2D), in any direction. We identify parametric regions where an initial kick applied to a soliton leads to three possible outcomes: staying put, persistent motion, or destruction. On the 2D lattice, the solitons survive the largest kick and attain the largest speed along the diagonal direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.