Abstract
A theoretical study is made on the effect of finiteness of the length of a circular cylinder on the translational motion of a small sphere along its centerline. Fluid occupying that region is assumed viscous and incompressible, and the analysis is based on the Stokes equations. The method of reflections is employed and first-order correction of the force experienced by the sphere is obtained. For longer cylinders, end-effects on the force are important only when the sphere is very close to the endwalls, while for cylinders whose length is the same order of magnitude as its radius, end-and sidewalls play equally significant roles. Among cylindrical boxes containing the same amount of fluid volume, additional resistance force at the center becomes minimum for a cylinder with its length/diameter ratio of about 0.56. Streamlines are also shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.