Abstract
Biocompatible composites are presented, consisting of magnetite nanoparticles embedded into a matrix of meltable dextran ester, which can be softened under an induced alternating magnetic field and may thereby allow magnetically controlled release applications. Temperature dependent mobility investigations of magnetic nanoparticles in the molten composites were carried out by optical microscopy, magnetometry, AC susceptibility and Mössbauer spectroscopy measurements. Optical microscopy shows a movement of agglomerates and texturing in the micrometer scale, whereas AC-susceptometry and Mössbauer spectroscopy investigations reveal that the particles perform diffusive Brownian motion in the liquid polymer melt as separated particles rather than as large agglomerates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.