Abstract
Mobility is a critical parameter that is routinely used for benchmarking the performance of field-effect transistors (FETs) based on novel nanomaterials. In fact, mobility values are often used to champion nanomaterials since high-performance devices necessitate high mobility values. The current belief is that the contacts can only limit the FET performance and hence the extracted mobility is an underestimation of the true channel mobility. However, here, such misconception is challenged through rigorous experimental effort, backed by numerical simulations, to demonstrate that overestimation of mobility occurs in commonly used geometries and in nanomaterials for which the contact interface, contact doping, and contact geometry play a pivotal role. In particular, dual-gated FETs based on multilayer MoS2 and WSe2 are used as case studies in order to elucidate and differentiate between intrinsic and extrinsic contact effects manifesting in the mobility extraction. The choice of 2D layered transition metal dichalcogenides (TMDCs) as the semiconducting channel is motivated by their potential to replace and/or coexist with Si-based aging FET technologies. However, the results are equally applicable to nanotube- and nanowire-based FETs, oxide semiconductors, and organic-material-based thin-film FETs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.