Abstract
In a vehicle-to-grid (V2G) system, electric vehicles (EVs) can be efficiently used as power consumers and suppliers to achieve microgrid (MG) autonomy. Since EVs can act as energy transporters among different regions (i.e., MGs), it is an important issue to decide where and when EVs are charged or discharged to achieve the optimal performance in a V2G system. In this paper, we propose a mobility-aware V2G control algorithm (MACA) that considers the mobility of EVs, states of charge of EVs, and the estimated/actual demands of MGs and then determines charging and discharging schedules for EVs. To optimize the performance of MACA, the Markov decision process problem is formulated and the optimal policy on charging and discharging is obtained by a value iteration algorithm. Since the mobility of EVs and the estimated/actual demand profiles of MGs may not be easily obtained, a reinforcement learning approach is also introduced. Evaluation results demonstrate that MACA with the optimal and learning-based policies can effectively achieve MG autonomy and provide higher satisfaction on the charging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.