Abstract

Abstract The continued increase in several mobile applications forces to replace existing limited spectrum indoor radio frequency wireless connections with high-speed ones. Visible light communications (VLC) technology has gained prominence in the development of high data rate transmission for fifth-generation networks. In optical wireless communications, light-emitting diode (LED) transmitters are used in applications that desire mobility as LED divergence enables larger coverage. Since each VLC access point covers a small area, handovers of mobile users are inevitable. Wavelength division multiplexing (WDM) can be used in VLC systems to tackle the above issue and to meet the increasing demand for indoor connectivity with high bit rates. In this paper, a new system architecture for WDM with coded modulated optical in orthogonal frequency division multiplexing (OFDM) VLC system in conjunction with red, green, blue, and yellow (RGBY) LEDs is proposed to reduce the impact of random receiver orientation of indoor mobile users over VLC downlink channels and improves the system’s bit-error-rate (BER) performance. Simulation results show that the proposed method is not affected by the user’s mobility and hence it performs better than other approaches, in terms of BER for all scenarios and at all positions. This study reveals that using WDM-OFDM-VLC with RGBY LEDs to construct a VLC system is very promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.