Abstract

Goethite is an effective adsorbent for hexavalent chromium (Cr(VI)). Oxalic acid and other organic acids will affect the release, immobilization, and bioavailability of Cr(VI) in nature on the mineral surface. Mn(II) can accelerate the reduction of Cr(VI) with oxalic acid. Herein, the effects of oxalic acid and Mn(II) on the mobilization and transformation of adsorbed Cr(VI) on the surface of goethite were investigated in this study. The results revealed that Mn(II) could increase the adsorption of Cr(VI) by increasing the positive charge on the surface of goethite. The complexation of oxalic acid with the surface of goethite caused the adsorbed Cr(VI) to be released into the solution. Moreover, oxalic acid could undergo redox with adsorbed Cr(VI) through electron conduction on the surface of goethite, thereby resulting in the transformation of adsorbed Cr(VI) to Cr(III). During the reaction in the presence of oxalic acid, the concentration of Cr(III) increased from 0 to 13.9mg/L. In addition, Mn(II), oxalic acid, and Cr(VI) could form unstable ester-like species in the solution, which accelerated the reduction of Cr(VI) to Cr(III). These findings of this study may enrich our understanding of the behaviors of Cr(VI) in the coexistence of goethite, oxalic acid, and Mn(II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call