Abstract

This study describes the mobility and chemical fractionation of heavy metals (HMs) from a site impacted by auto battery slag that was generated from secondary lead smelting operations. Samples were collected from the waste pile and from the immediate surrounding soil at four depths to assess the migration and potential bioavailability of Pb, Cd, Cr, Ni and Zn. Total levels of the HMs and their fractionation were determined. The results indicate that highest levels of HMs are present in the uppermost layer with significant migration down the depth, thereby posing a threat to groundwater quality. In the fractions, the concentrations of the metals follow this sequence: Pb>Zn>Cd>Cr>Ni. The chemical fractions of Pb, Cd, Cr, Ni and Zn in the samples, expressed as mean concentrations of the sum of the individual chemical fractions, demonstrate that the HMs exist mainly in the non-residual fractions. For instance, the percentage of non-residual fractions of lead in the waste pile and the surrounding soil ranged from 48.9 to 95.6% and 69.4 to 98.3% respectively. The mobility factors of the heavy metals are significantly high indicating high potential mobility and bioavailable forms of these HMs. The high concentrations of the HMs particularly Pb in the non-residual fractions, as observed in this study, shows the impact of anthropogenic activities on enrichment of natural soil with bioavailable HMs. Consequently, there is a need to be cautious in the way waste that is generated from heavy metals projects is added to natural soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call