Abstract
Despite their increasing clinical use, mobile-bearing total knee replacements have not been well characterized biomechanically. An experimental and finite element analysis was done to assess the mobility and contact mechanics of a widely used rotating platform total knee replacement. Parameters that varied were axial load, condylar load allocation, flexion angle, and static versus dynamic loading. Similar results from the physical model and finite element model lend credence to the validity of the findings. The torque required to initiate rotation (static torque) was greater than that to sustain rotation (dynamic torque). At four times body weight axial load, peak resisting torque measured was 9.47+/-0.61 and 5.51+/-0.38 N-m, for static and dynamic torque, respectively. A 60-40 condylar load allocation produced slightly less resisting torque than the 50-50 load. For all practical purposes, the polyethylene insert rotated simultaneously with the femoral component, leading to maintenance of high contact area, desirable behavior clinically. Walking cycle simulations produced a total axial rotation range of motion of 6 degrees. The high frictional torques observed at the mobile interface may explain why a percentage of these mobile-bearings fail to rotate under routine functional load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.