Abstract

A new molecular dynamics (MD) method is introduced, and used to study NO+ ions drifting in helium under the influence of a uniform electric field. Mobilities, average values of squared velocities, and self-diffusion coefficients parallel and perpendicular to the electric field are reported for two recent ab initio potential surfaces: a coupled cluster singles–doubles with perturbative treatment of triple excitations [CCSD(T)] surface [S. K. Pogrebnya et al., Int. J. Mass Spectrom. Ion Processes 149/150, 207 (1995)] and a MP4SDTQ/6-311+G(2df,p) surface [L. A. Viehland et al., Chem. Phys. 211, 1 (1996)]. Average values of angular momentum and alignment parameters are also reported and compared. In all cases, no significant differences were found in the calculated values for the two different potential surfaces. Finally, mobility values are compared with experimental measurements [J. A. de Gouw et al., J. Chem. Phys. 105, 10398 (1996)] and good agreement is obtained for both potential surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.