Abstract

Since the COVID-19 pandemic occurred all over the world, numerous studies were carried out to overcome this problem, including COVID-19 image analysis. An expert analysis based on the Chest X-ray images of COVID-19 determines the progression of the lung condition. Eye visualization and expertise of a radiologist have limitations in handling big cases. This study aims to implement the Convolutional Neural Network (CNN) and MobileNet models as deep learning models to classify chest X-ray images into multiclassification, three categories: COVID-19, normal, and virus. The processes were pre-processing and processing. The pre-processing stage was preparing data, and the processing stage was the implementation model and investigating the best model performance in both convolution and classification in depth-wise convolution and batch normalization. The metrics were accuracy, precision, f1-score, and recall. The CNN results of accuracy, precision, recall, and f1-score respectively were 0.94; 0.99; 0.95; and 0.96. The MobileNet results of the metrics were 0.97; 0.98; 0.99, and 0.99. The MobileNet outperforms the CNN results due to depth-wise convolution and batch normalization. Both models contribute to the faster epoch of the best hyperparameter to achieve loss and accuracy convergence. The models are worth recommending to deployment front-end.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call