Abstract
The paper investigates the problem of mobile tracking in mixed line-of-sight (LOS)/non-line-of-sight (NLOS) conditions. The motion of mobile station is modeled by a dynamic white noise acceleration model, while the measurements are time of arrival (TOA). A first-order Markov model is employed to describe the dynamic transition of LOS/NLOS conditions. An improved Rao-Blackwellized particle filter (RBPF) is proposed, in which the LOS/NLOS sight conditions are estimated by particle filtering using the optimal trial distribution, and the mobile state is computed by applying approximated analytical methods. The theoretical error lower bound is further studied in the described problem. A new method is presented to compute the posterior Cramer-Rao lower bound (CRLB): the mobile state is first estimated by decentralized extended Kalman filter (EKF) method, then sigma point set and unscented transformation are applied to calculate Fisher information matrix (FIM). Simulation results show that the improved RBPF is more accurate than current methods, and its performance approaches to the theoretical bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.