Abstract

Mobile wireless sensor networks have been extensively deployed for enhancing environmental monitoring and surveillance. The availability of low-cost mobile robots equipped with a variety of sensors makes them promising in target coverage tasks. They are particularly suitable where quick, inexpensive, or nonlasting visual sensing solutions are required. In this paper, we consider the problem of low complexity target tracking to cover and follow moving targets using flying robots. We tackle this problem by clustering targets while estimating the camera location and orientation for each cluster separately through a cover-set coverage method. We also leverage partial knowledge of target mobility to enhance the efficiency of our proposed algorithms. Three computationally efficient approaches are developed: predictive fuzzy, predictive incremental fuzzy, and local incremental fuzzy. The objective is to find a compromise among coverage efficiency, traveled distance, number of drones required, and complexity. The targets move according to one of the following three possible mobility patterns: random waypoint, Manhattan grid, and reference point group mobility patterns. The feasibility of our algorithms and their performance are also tested on a real-world indoor testbed called drone-be-gone, using Parrot AR.Drone quadcopters. The deployment confirms the results obtained with simulations and highlights the suitability of the proposed solutions for real-time applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.