Abstract

Mobile robots (MRs) using wireless communications often experience small-scale fading so that the wireless channel gain can be low. If the channel gain is poor (due to fading), the robot can move (a small distance) to another location to improve the channel gain and so compensate for fading. Techniques using this principle are called mobility diversity algorithms (MDAs). MDAs intelligently explore a number of points to find a location with high channel gain while using little mechanical energy during the exploration. Until now, the location of these points has been predetermined. In this paper, we show how we can adapt their positions by using channel predictors. Our results show that MDAs, which adapt the location of those points, can in fact outperform (in terms of the channel gain obtained and mechanical energy used) the MDAs that use predetermined locations for those points. These results will significantly improve the performance of the MDAs and consequently allow MRs to mitigate poor wireless channel conditions in an energy-efficient manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call