Abstract

A speech processing arrangement has at least two microphones for supplying microphone signals formed by speech components and noise components to microphone signal branches that are coupled to an adder device used for forming a sum signal. The microphone signals are delayed and weighted by weight factors in the microphone signal branches. The arrangement includes an evaluation circuit that a) receives the microphone signals, b) estimates the noise components, c) estimates the speech components by forming the difference between one of the microphone signals and the estimated noise component for this microphone signal, d) selects one of the microphone signals as a reference signal which contains a reference noise component and a reference speech component, e) forms speech signal ratios by dividing the estimated speech components by the estimated reference speech component, f) forms noise signal ratios by dividing the powers of the estimated noise components by the power of the estimated reference noise component, and g) determines the weight factors by dividing each speech signal ratio by the associated noise signal ratio. The signal-to-noise ratio corresponds to the ratio of the power of the speech component to the power of the noise component of the sum signal. Because the speech signals are correlated and noise signals are uncorrelated, the sum signal available on the output of the adder device has a reduced noise component yielding improved speech audibility. Real-time computation of the weight factors eliminates any annoying delay during a conversation held using the speech processing arrangement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.