Abstract

The localization of sensors in wireless sensor networks has recently gained considerable attention. The existing location methods are based on a one-spot measurement model. It is difficult to further improve the positioning accuracy of existing location methods based on single-spot measurements. This paper proposes two location methods based on multi-spot measurements to reduce location errors. Because the multi-spot measurements model has more measurement equations than the single-spot measurements model, the proposed methods provide better performance than the traditional location methods using one-spot measurement in terms of the root mean square error (RMSE) and Cramer-Rao lower bound (CRLB). Both closed-form and iterative algorithms are proposed in this paper. The former performs suboptimally with less computational burden, whereas the latter has the highest positioning accuracy in attaining the CRLB. Moreover, a novel CRLB for the proposed multi-spot measurements model is also derived in this paper. A theoretical proof shows that the traditional CRLB in the case of single-spot measurements performs worse than the proposed CRLB in the case of multi-spot measurements. The simulation results show that the proposed methods have a lower RMSE than the traditional location methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.