Abstract
Forming fluid supported lipid bilayers (SLBs) on a gold surface can enable various lipid-membrane-associated biomolecular interactions to be investigated by several surface sensing techniques, such as surface plasmon resonance and scanning tunneling microscopy. However, forming fluid SLBs on a gold surface through lipid vesicle deposition continues to pose a challenge. In this study, we constructed nanograting structures on a gold surface to induce lipid vesicle rupture for forming a mobile layer of SLBs. Observations based on fluorescence recovery after photobleaching showed that SLBs on the prepared grating supports had some fluidity, while SLBs on the planar support had no fluidity. The anisotropic fluorescence intensity recovery shape changes observed in the SLBs on the grating support suggested that a second layer of SLBs partially formed on top of the first layer in contact with the gold surface and extended along the grating structure. Comparisons of the relative amounts of second bilayer and the fluorescence recovery fractions on supports with various grating edge densities suggested that the second layer formed at the edge regions and that the coverage ratio was directly proportional to the grating edge density. All of these results showed that the grating edges could serve as vesicle-rupture-inducing sites for the formation of a mobile second SLB on a gold surface. The formation of the second layer of SLBs at the edge regions but not in the flat regions enabled us to determine the second layer locations and provided us with an opportunity to pattern mobile lipid bilayers on gold surfaces by controlling the edge locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.