Abstract

We report a comprehensive study of the ground-state properties of one and two bosonic impurities immersed in small one-dimensional optical lattices loaded with a few interacting bosons. We model the system with a two-component Bose–Hubbard model and solve the problem numerically by means of the exact diagonalization method. We report binding energies of one and two impurities across the superfluid (SF) to Mott-insulator transition and confirm the formation of two-body bound states of impurities induced by repulsive interactions. In particular, we found that an insulator bath induces tightly bound di-impurity dimers, whereas a SF bath induces shallower bound states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call