Abstract

Low levels of physical activity (PA) and high levels of sedentary behavior in individuals with spinal cord injury (SCI) have been associated with secondary conditions such as pain, fatigue, weight gain, and deconditioning. One strategy for promoting regular PA is to provide people with an accurate estimate of everyday PA level. The objective of this research was to use a mobile health-based PA measurement system to track PA levels of individuals with SCI in the community and provide them with a behavior-sensitive, just-in-time-adaptive intervention (JITAI) to improve their PA levels. The first, second, and third phases of the study, each with a duration of one month, involved collecting baseline PA levels, providing near-real-time feedback on PA level (PA Feedback), and providing PA Feedback with JITAI, respectively. PA levels in terms of energy expenditure in kilocalories, and minutes of light- and moderate- or vigorous-intensity PA were assessed by an activity monitor during the study. Twenty participants with SCI took part in this research study with a mean (SD) age of 39.4 (12.8) years and 12.4 (12.5) years since injury. Sixteen participants completed the study. Sixteen were male, 16 had paraplegia, and 12 had complete injury. Within-participant comparisons indicated that only two participants had higher energy expenditure (>10%) or lower energy expenditure (<-10%) during PA Feedback with JITAI compared to the baseline. However, eleven participants (69.0%) had higher light- and/or moderate-intensity PA during PA Feedback with JITAI compared to the baseline. To our knowledge, this is the first study to test a PA JITAI for individuals with SCI that responds automatically to monitored PA levels. The results of this pilot study suggest that a sensor-enabled mobile JITAI has potential to improve PA levels of individuals with SCI. Future research should investigate the efficacy of JITAI through a clinical trial.

Highlights

  • Low levels of physical activity (PA) and high levels of sedentary behavior in 300,000+ individuals with spinal cord injury (SCI) in the US have been associated with secondary conditions such as pain, fatigue, weight gain, and deconditioning [1,2,3,4]

  • The study was retrospectively registered at ClinicalTrials.gov (NCT03773692) as we did not realize that this non-randomized pilot study of tracking PA levels and providing feedback and just-in-time-adaptive intervention (JITAI) to participants fit the World Health Organization’s definition of a clinical trial

  • The SCI varied from cervical level three to thoracic level 12; twelve of the participants had a complete injury and 16 had paraplegia

Read more

Summary

Introduction

Low levels of physical activity (PA) and high levels of sedentary behavior in 300,000+ individuals with spinal cord injury (SCI) in the US have been associated with secondary conditions such as pain, fatigue, weight gain, and deconditioning [1,2,3,4]. Tawashy et al performed a crosssectional survey-based study in individuals with SCI and found that higher levels of PA were correlated with lower levels of pain, fatigue, and depression [1]. Rimmer et al presented a framework called Disability-Associated Low Energy Expenditure (EE) Deconditioning Syndrome, which suggests that individuals with a neuromuscular disability have higher rates of sedentary behavior predisposing them to severe deconditioning [2]. A number of studies have developed and validated sensor-based activity monitors for individuals with SCI to quantify movement of the individual, wheelchair movement, and physiological changes, both in the laboratory and under free-living conditions [6,7,8,9,10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call