Abstract
The emergence and spread of antibiotic-resistant pathogenic bacterial strains in recent decades is an alarming trend and a serious challenge for the future of mankind around the world. The horizontal transfer and spread of antibiotic resistance genes among microorganisms through mobile genetic elements (MGEs), an extremely diverse group of prokaryotic mobilomas capable of moving DNA molecules intra- or intercellularly, aggravate the situation. MGEs play a central role in the phenotypic adaptation of bacteria, providing resistance to antibiotics and physical parameters of the environment, acquiring pathogenicity factors, and transforming metabolic pathways. However, the importance of MGEs is often overlooked when planning the strategies to contain the spread of antimicrobial resistance in pathogens. The aim of this review is to briefly characterize the main types of MGEs (plasmids, transposons, bacteriophages, integrons, and introns) involved in the formation of antibiotic resistance in pathogenic bacteria, with an emphasis on the members of the Enterobacteriaceae family. In the final part of the review, promising modern strategies for combating antimicrobial resistance based on the use of antiplasmid approaches and CRISPR/Cas technologies are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.