Abstract
Atomistic mechanisms of hydrogen-induced cracking along a bcc Fe Σ3(111) symmetrical tilt grain boundary (GB) have been studied by first-principles calculations. The mobile and immobile effects of hydrogen on the GB decohesion are analyzed by calculating the dependence of hydrogen segregation energy on the coverage relevant to the repulsive interaction among segregated hydrogen atoms at the GB and on its fracture surfaces, together with generalizing McLean's formula. It was found that the segregation of combined mobile and immobile hydrogen atoms from the bulk and/or GB on the fracture surfaces causes much stronger reduction (70–80%) in the GB cohesive energy. It can occur even at a very low bulk hydrogen content of about 10−9 atomic fraction during slow cracking. This is in contrast to only 10–20% decohesion induced by immobile hydrogen at much higher hydrogen content during fast cracking. The mobile effect of hydrogen, giving rise to a profound reduction in the GB cohesive energy, is a key factor controlling the mechanism of hydrogen-induced GB cracking.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.