Abstract
Most research investigating auditory perception is conducted in controlled laboratory settings, potentially restricting its generalizability to the complex acoustic environment outside the lab. The present study, in contrast, investigated auditory attention with long-term recordings (> 6 h) beyond the lab using a fully mobile, smartphone-based ear-centered electroencephalography (EEG) setup with minimal restrictions for participants. Twelve participants completed iterations of two variants of an oddball task where they had to react to target tones and to ignore standard tones. A rapid variant of the task (tones every 2 s, 5 min total time) was performed seated and with full focus in the morning, around noon and in the afternoon under controlled conditions. A sporadic variant (tones every minute, 160 min total time) was performed once in the morning and once in the afternoon while participants followed their normal office day routine. EEG data, behavioral data, and movement data (with a gyroscope) were recorded and analyzed. The expected increased amplitude of the P3 component in response to the target tone was observed for both the rapid and the sporadic oddball. Miss rates were lower and reaction times were faster in the rapid oddball compared to the sporadic one. The movement data indicated that participants spent most of their office day at relative rest. Overall, this study demonstrated that it is feasible to study auditory perception in everyday life with long-term ear-EEG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.