Abstract

Time synchronization of clocks in the sensor nodes for wireless sensor networks (WSNs) is a fundamental technology for most mission-critical applications. Most of past research in time synchronization for WSNs, however, has only focused on achieving some of the goals at a time, such as accuracy, energy consumption, completion time, etc., making these solutions less capable of adapting to different application requirements. In this paper, we propose a new time synchronization algorithm named MBATS (mobile beacon-based adaptive time synchronization) in which a mobile beacon is employed to move or fly over the sensor deployment area to complete time synchronization. Moreover, MBATS is designed so that the number of sensor nodes that are synchronized by one instance of time synchronization from the mobile beacon could vary dynamically to meet application requirements on accuracy, completion time and energy consumption, making the proposed MBATS algorithm highly adaptable to different application requirements. In addition to showing the advantage of the proposed MBATS algorithm on the adaptability of time synchronization as well as on some of the main metrics of synchronization over comparable schemes for WSNs, we also present the results of our study on comparing the performance of letting the mobile beacon traverse along a designing path versus follow a random path. Such a study is important since it would allow us to learn the performance gains that we can expect to achieve with extra control effort spent on designing the path over the effortless random path strategy. Such study could provide us with some clues on how to choose a suitable time synchronization strategy to better meet application requirements, which may not necessarily be the designed path strategy due to the tradeoff between cost and performance gains.

Highlights

  • Wireless sensor networks (WSNs) are self-organized and distributed networks composed of many deployed sensors that are normally employed to sense and collect data about some desired environmental or physical properties and transmit these data in a multi-hop fashion to the server for integration and processing

  • By dynamically adjusting the number of sensor nodes that are synchronized for each instance of synchronization initiated by the mobile beacon, MBATS can adapt to different application requirements, such as accuracy, energy consumption, and completion time

  • 7 Conclusions Time synchronization is an indispensable requirement for WSNs in many applications

Read more

Summary

Introduction

Wireless sensor networks (WSNs) are self-organized and distributed networks composed of many deployed sensors that are normally employed to sense and collect data about some desired environmental or physical properties and transmit these data in a multi-hop fashion to the server for integration and processing. By dynamically adjusting the number of sensor nodes that are synchronized for each instance of synchronization initiated by the mobile beacon, MBATS can adapt to different application requirements, such as accuracy, energy consumption, and completion time. (2) After a node is synchronized (initially the mobile beacon only), it would wait for a random amount of time and broadcast a synchronization message which contains the layer number and its identity to its immediate neighbors.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.