Abstract

Abstract. In the dismantling of nuclear facilities, the decontamination and remote-controlled crushing of reinforced concrete is a central point. The main objective is to selectively remove the contaminated material in order to feed the remaining material, which in relation to the overall system or overall mass, represents the predominant part of the normal recycling cycle. For the surface decontamination of the upper millimeters, several methods are available that are constantly being optimized and further developed. However, there is a great need for research in the demolition and selective deep removal of reinforced concrete, e.g. in the case of cracks or eruptions into which contamination could penetrate, or the removal of metallic fixtures. The production of freely measurable surface geometries is a constant objective (Edelmann et al., 2018). The German “Defined removal of highly reinforced concrete” (DefAhS) research project was funded by the German Federal Ministry of Education and Research (BMBF) from October 2013 to the end of March 2018. In the course of the project, a new combination tool consisting of indexable inserts and impact lamellas was developed. With this method it is possible to remove highly reinforced concrete in one operation. The following property right could be granted: “Device for removing building material” (DE102015114122B3). Within the research project, concrete, reinforcement and fixtures (dowels, rails, anchor plates, pipe penetrations) could be successfully cut. It could also be shown that it is possible to remove several layers of steel reinforcement within a concrete matrix. The “Mobile attachment for automated crack milling” (MAARISS) research project has been running since November 2020. The hybrid milling technology developed in DefAhS is intended to form the basis for the milling drum used in MAARISS. The aim in MAARISS is, among other things, a new development of the extraction system directly on the removal unit and an automation system for use in a nuclear facility. Cracks are to be automatically milled over in order to enable subsequent clearance measurement by the staff on site. The physically very strenuous work of crack uncovering should be reduced to just one operator in a safe environment. The construction of a scaffold should be completely dispensed with and existing transport technology (forklift or lifting platform) should be used.

Highlights

  • The “Mobile attachment for automated crack milling” (MAARISS) research project has been running since November 2020

  • The hybrid milling technology developed in DefAhS is intended to form the basis for the milling drum used in MAARISS

  • The physically very strenuous work of crack uncovering should be reduced to just one operator in a safe environment

Read more

Summary

Introduction

The “Mobile attachment for automated crack milling” (MAARISS) research project has been running since November 2020. The hybrid milling technology developed in DefAhS is intended to form the basis for the milling drum used in MAARISS. The aim in MAARISS is, among other things, a new development of the extraction system directly on the removal unit and an automation system for use in a nuclear facility. Beim Rückbau kerntechnischer Anlagen sind die Dekontaminierung und ferngesteuerte Zerkleinerung von Stahlbeton eine zentrale Aufgabe.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call